这些文件被快速下发到了每个人的手中。
接着短短五分钟不到。
帐篷内便响起了刷刷刷的笔算和噼里啪啦的算盘声。
作为项目的总负责人,叶笃正这次同样也亲自下场进行了计算,并且负责的是最复杂的涡度场。
涡度。
这是和散度是差不多用处的概念。
不过散度描的是述气流的离散程度,一般正值为气流辐散,负值气流辐合。
而涡度有绝对涡度和相对涡度之分。
它们的关系可以通过【绝对涡度=相对涡度+2Ω】(其中Ω为地球自转角速度)来计算。
这部分计算是叶笃正主动申请下来的,毕竟……
在之前的计算过程中,他就曾经在三维空间流体方面栽了个跟头。
当时他将笛卡尔坐标系转化为曲面坐标,将连续方程拆分成水平和垂直两个方向分别计算。
同时在痕量物质方面依据雷诺分解,把瞬时浓度分解为了均值项和湍流项。
但后来实际情况证明他的思路是错误的,他低估了垂直梯度的实际变动量。
换而言之……
他必须要重新设计出一个模型。
想到这里。
叶笃正先在算纸上写下了一个方程:
du/dt=-▽(p/p)+v▽^2u
这是很有名的纳维-斯托克斯方程,提出于一百多年前,属于一个描述流体情况的方程组。
其中的斯托克斯想必有些同学会感觉眼熟——没错,这个斯托克斯就是1850副本中徐云的便宜导师……
它关于u的边界条件是u=0。
接着叶笃正很快又写道:
δt=(at/at)δt+(at/ax)δx+……
δx=uxδt,进而
dt/dt=atat+uxatax+uyatay+uzataz=atat+(u·▽)t……
da/dt=aaat+(u·▽)a……
所以navier-stokes方程可以改写为:
du/dt=auat+(u·▽)u=-▽(p/p)+v▽2u。
写到这里。
叶笃正不由笔尖一顿。
上头这部分推导是他在前些天想出来的优化形式,弥补了自己原先思路的不足。
但是……