不过考虑到这二位在历史上的成就,加之欧拉已经推导出了部分亲和数公式
好吧,他们能做到这一步似乎也没啥好意外的。
与此同时。
这也算是解开了一桩数学史上的谜题:
在计算机发明之前,几乎每个数学流派都会在亲和数方面投入大量的精力和时间。
但唯独高斯的哥廷根数学派系除外。
无论是高斯本人,还是黎曼、雅可比、戴德金或者狄利克雷,他们全都没有留下过任何研究亲和数的作品或者记录。
这其实是一种很奇怪的现象,好比后世搞量子理论的大佬不去研究微扰论一样违和。
如今随着高斯的这番话,一切总算是真相大白了:
合着他们早就破解了亲和数的谜团,觉得太简单才没去管
随后高斯看了眼有些意犹未尽的徐云。
沉吟片刻,主动来到皮箱边翻找了几下。
很快。
他便从中取出了另一册稍厚一些的手稿,递给了徐云,说道:
“罗峰,既然你对亲和数有兴趣,这卷手稿或许会符合你的口味。”
注:
生物钟差不多调回来了,今天76k奉上,求保底月票啊,这个月没双倍的,9月10月才有,!
伯全能王数学家塔别脱·本·科拉提出了一个想法:
无穷的自然数中亲和数一定不止一对!
他和以往数学家不同,他不打算去从漫无边际的自然数中筛选。
而是从一般规律出发,试图找到亲和数的通用公式。
这位全能王为了研究亲和数放弃了其他所有科目的研究,年仅20多岁就谢顶了。
不过功夫不负有心人,后来他总算归纳出了一个规律:
a=3x2(x-1)-1
b=3x2x-1
c=9x2(2x-1)-1。
这里的x是大于1的自然数,若abc均为素数,那么2xab与2xc就是一堆友好数。
比如取x=2,那么a5,b=11,c=71。
所以2x2x5x11=220和2x2x71=284为一对亲和数。
结论一出,证明了毕教主不是信口开河,亲和数的确存在,并且可以通过计算得到。
从这里起,故事开始有意思了起来……
自那以后。
数学家们不再没有头绪的寻找亲和数。
而是一边寻找更为简单的公式,一边通过公式大量计算来寻找亲和数。
但遗憾的是。
在之后800多年里,数学家们不仅没有优化全能王的公式,而且一对新的亲和数都没有找到
这也就是说。
在毕达哥拉斯之后2500年,没有人能够找到第二对亲和数的影子!
这个局面一直持续到了1636年,逼王费马闪亮登上历史舞台,一举打破了2500多年的历史尴尬。